

KARNATAK UNIVERSITY, DHARWAD ACADEMIC (S&T) SECTION

ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಧಾರವಾಡ ವಿದ್ಯಾಮಂಡಳ (ಎಸ್&ಟಿ) ವಿಭಾಗ

website: kud.ac.in

Tele: 0836-2215224 e-mail: academic.st@kud.ac.in Pavate Nagar,Dharwad-580003 ಪಾವಟೆ ನಗರ, ಧಾರವಾಡ – 580003

NAAC Accredited 'A' Grade 2014

No. KU/Aca(S&T)/JS/MGJ(Gen)/2023-24/59

Date: 04 09 2023

ಅಧಿಸೂಚನೆ

ವಿಷಯ: 2023-24ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಎಲ್ಲ ಸ್ನಾತಕ ಪದವಿಗಳಿಗೆ 5 ಮತ್ತು 6ನೇ ಸೆಮೆಸ್ಟರ್ NEP-2020 ಪಠ್ಯಕ್ರಮವನ್ನು ಅಳವಡಿಸಿರುವ ಕುರಿತು. ಉಲ್ಲೇಖ: 1. ಸರ್ಕಾರದ ಅಧೀನ ಕಾರ್ಯದರ್ಶಿಗಳು(ವಿಶ್ವವಿದ್ಯಾಲಯ 1) ಉನ್ನತ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಇವರ ಆದೇಶ ಸಂಖ್ಯೆ: ಇಡಿ 104 ಯುಎನ್ಇ 2023, ದಿ: 20.07.2023. 2. ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ನಿರ್ಣಯ ಸಂಖ್ಯೆ: 2 ರಿಂದ 7, ದಿ: 31.08.2023. 3. ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶ ದಿನಾಂಕ: ಲಿೆ (252)

ಮೇಲ್ಯಾಣಿಸಿದ ವಿಷಯ ಹಾಗೂ ಉಲ್ಲೇಖಗಳನ್ವಯ ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಆದೇಶದ ಮೇರೆಗೆ, 2023–24ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಅನ್ವಯವಾಗುವಂತೆ, ಎಲ್ಲ B.A./ BPA (Music) /BVA / BTTM / BSW/ B.Sc./B.Sc. Pulp & Paper Science/ B.Sc. (H.M)/ BCA/ B.A.S.L.P./ B.Com/ B.Com (CS) / BBA & BA ILRD ಸ್ನಾತಕ ಪದವಿಗಳ 5 ಮತ್ತು 6ನೇ ಸೆಮೆಸ್ಟರ್ಗಳಿಗೆ NEP-2020ರ ಮುಂದುವರೆದ ಭಾಗವಾಗಿ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ಅನುಮೊದಿತ ಕೋರ್ಸಿನ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲ <u>www.kud.ac.in</u> ದಲ್ಲಿ ಭಿತ್ತರಿಸಲಾಗಿದೆ. ಸದರ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲದಿಂದ ಡೌನಲೋಡ ಮಾಡಿಕೊಳ್ಳಲು ಸೂಚಿಸುತ್ತ ವಿದ್ಯಾರ್ಥಿಗಳ ಹಾಗೂ ಸಂಬಂಧಿಸಿದ ಎಲ್ಲ ಬೋಧಕರ ಗಮನಕ್ಕೆ ತಂದು ಅದರಂತೆ ಕಾರ್ಯಪ್ರವೃತ್ತರಾಗಲು ಕವಿವಿ ಅಧೀನದ/ಸಂಲಗ್ನ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ ಸೂಚಿಸಲಾಗಿದೆ.

ಅಡಕ: ಮೇಲಿನಂತೆ

ಗೆ,

ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯದ ವ್ಯಾಪ್ತಿಯಲ್ಲಿ ಬರುವ ಎಲ್ಲ ಅಧೀನ ಹಾಗೂ ಸಂಲಗ್ನ ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ. (ಕ.ವಿ.ವಿ. ಅಂರ್ತಜಾಲ ಹಾಗೂ ಮಿಂಚಂಚೆ ಮೂಲಕ ಬಿತರಿಸಲಾಗುವುದು)

ಪ್ರತಿ:

- 1. ಕುಲಪತಿಗಳ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 2. ಕುಲಸಚಿವರ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 3. ಕುಲಸಚಿವರು (ಮೌಲ್ಯಮಾಪನ) ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 4. ಅಧೀಕ್ಷಕರು, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ / ಗೌಪ್ಯ / ಜಿ.ಎ.ಡಿ. / ವಿದ್ಯಾಂಡಳ (ಪಿ.ಜಿ.ಪಿಎಚ್.ಡಿ) ವಿಭಾಗ, ಸಂಬಂಧಿಸಿದ ಕೋರ್ಸುಗಳ ವಿಭಾಗಗಳು ಪರೀಕ್ಷಾ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 5. ನಿರ್ದೇಶಕರು, ಕಾಲೇಜು ಅಭಿವೃದ್ಧಿ / ವಿದ್ಯಾರ್ಥಿ ಕಲ್ಯಾಣ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.

KARNATAK UNIVERSITY, DHARWAD

B.Sc. in PHYSICS

Syllabus for V & VI Semester SEMESTER - V

Discipline Specific Core Course (DSCC)

DSCC - 09: Theory (Code: 035 PHY 011)

DSCC - 10: Practical (Code: 035 PHY 012)

DSCC - 11: Theory (Code: 035 PHY013)

DSCC - 12: Practical (Code: 035 PHY 014)

SEC 03 – Practical (Code: 035 PHY 061)

SEMESTER - VI

Discipline Specific Core Course (DSCC)

DSCC - 13: Theory (Code: 036 PHY 011)

DSCC - 14: Practical (Code: 036 PHY 012)

DSCC - 15: Theory (Code: 036 PHY013)

DSCC - 16: Practical (Code: 036 PHY 014)

Internship-01 (Code: 036 PHY 091) AS PER NEP-2020 With Effect from 2023-24

Karnatak University, Dharwad

B.Sc. in PHYSICS

Effective from 2023-24

Sem	Type of Course	Theory/ Practical	Course Code	Course Title	Instruction hour/ week	Total hours / sem	Duration of Exam	Formative	Marks Summative	Total	Credits
	DSCC-09	Theory	035 PHY 011	Classical Mechanics and Quantum Mechanics	04 hrs	56	02 hrs	40	60	100	04
V	DSCC-10	Practical	035 PHY 012	Classical Mechanics and Quantum Mechanics	04 hrs	56	03 hrs	25	25	50	02
	DSCC-11	Theory	035 PHY 013	Elements of Atomic, Molecular and Laser Physics	04 hrs	56	02 hrs	40	60	100	04
	DSCC-12	Practical	035 PHY 014	Elements of Atomic, Molecular and Laser Physics	04 hrs	56	03 hrs	25	25	50	02
	Other subject										04
	Other subject										04
	Other subject										04
	SEC-3	Practical	035PHY061		04hrs	56	03 hrs	25	25	50	02
				Total							26
VT	DSCC-13	Theory	036PHY011	Elements of Condensed Matter & Nuclear Physics	04 hrs	56	02 hrs	40	60	100	04
VI	DSCC-14	Practical	036PHY012	Elements of Condensed Matter & Nuclear Physics	04 hrs	56	03 hrs	25	25	50	02
	DSCC-15	Theory	036PHY013	Electronic Instrumentation & Sensors	04 hrs	56	02 hrs	40	60	100	04
	DSCC-16	Practical	036PHY014	Electronic Instrumentation & Sensors	04 hrs	56	03 hrs	25	25	50	02
	Other subject										04
	Other subject										04
	Other subject										04
	Internship/ Mini Project		036PHY091	Projects in Physics at UG level				50	0	50	02
										Total	26

B.Sc. Semester – V Discipline Specific Core Course (DSCC)-09

Course Title: Classical Mechanics and Quantum Mechanics

Course Code: 035PHY011

Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks	
DSCC-9	Theory	04	04	56 hrs.	2hrs.	40	60	100	

Course Outcomes (COs): At the end of the course students will be able to:

- CO1: Identify the failure of classical physics at the microscopic level.
- CO2: Alternate approach towards the study of classical mechanics by Lagrangian, Variational and Hamiltonian formulations.
- CO3: Find the relationship between the normalization of a wave function and the ability to calculate expectation values or probability densities.
- CO4: Explain the minimum uncertainty of measuring both observables on any quantum state.
- CO5: Describe the time-dependent and time-independent Schrödinger equation for simple potentials like for instance one-dimensional potential well and Harmonic oscillator.
- CO6: Apply Hermitian operators, their eigen values and eigen vectors to find various commutation and uncertainty relations.

Unit Title: Classical Mechanics and Quantum Mechanics				
Omt	The classical vicenances and Quantum vicenances	sem		
	Lagrangian Formulation: Mechanics of single Particle and System of Particles (In			
	both cases): Conservation theorems for linear momentum, angular momentum and			
Unit I	energy. Constraints: Holonomic constraints, non-holonomic constraints with			
	suitable examples, Scleronomic and Rheonomic constraints with suitable examples.			
	Configuration space, Degrees of freedom, Generalized coordinates, Generalized			
	displacement, Velocity, Acceleration, Force, Potential, Virtual displacement,			
	Principle of virtual work. D'Alembert's principle (derivation), Lagrange equations	14Hrs		
	for conservative system and non-conservative system (derivation). Applications of			
	Lagrangian formulation (1) Newton's equation of motion for single Particle in one			
	dimension in Cartesian coordinates and polar coordinates (2) simple pendulum			
	expression for acceleration (3) Atwood's machine expression for common			
	acceleration (4) linear harmonic oscillator (derivation in each case). Advantages of			
	Lagrangian formulation.			
	Variational Principle: Hamilton's principle, Deduction of Hamilton's principle,			
Unit II	Lagrange's equation of motion from Hamilton's principle (with derivation).			
	Hamilton's principle for non-holonomic systems using Lagrange multiplier	1/14.		
	method(with derivation).	14018		
	Hamiltonian Mechanics: The Hamiltonian of a system, Hamilton's equations of			
	motion, Hamilton's equations from variational principle (with derivation), Integrals			

	of Hamilton's equations: energy integrals, Canonical Transformations (qualitative	
	discussion with mention of four different forms), Poisson Brackets: fundamental	
	properties of Poisson brackets and equations of motion in Poisson Brackets form.	
	Introduction to Quantum Mechanics: Brief explanation on failure of classical	
	physics: black body radiation, Photoelectric effect, Compton effect, stability of	
Unit III	atoms and spectra of atoms, variation of specific heat of solids with temperature.	
	Planck's quantum theory: a brief discussion. Compton scattering: Expression for	
	Compton shift (With derivation). Mention of expression for scattered photon energy	
	and K.E. of recoil electron. Matter Waves: de Broglie hypothesis of matter waves,	
	Wave description of particles by wave packets, Group and Phase velocities and	14Hrs
	relation between them, Experimental evidence for existence of matter waves: G.P	
	Thomson's experiment and its significance.	
	Heisenberg Uncertainty Principle: Statement and elementary proof of	
	Heisenberg's relation between momentum and position and mention of uncertainty	
	principle for energy & time, and angular momentum & angular position,	
	illustration of uncertainty principle by Diffraction of electrons through single slit	
	experiment. Explain why electron cannot exist inside the nucleus based on	
	uncertainty principle.	
	Foundation of Quantum Mechanics: Probabilistic interpretation of the wave	
Unit IV	function - normalization and orthogonally of wave functions, Admissibility	
	conditions on a wave function, setting up of time independent Schrödinger	
	equation for matter wave, mention of Schrodinger wave equation for a free particle	
	in one and three-dimension, mention of time-dependent Schrödinger equation in	
	one dimension. Probability current density, equation of continuity and its physical	
	significance, Postulates of Quantum mechanics: States as normalized wave	
	functions. Dynamical variables as linear Hermitian operators (position, momentum,	14Hrs
	angular momentum, and energy as examples). Expectation values of operators.	
	Ehrenfest theorem statement with example.	
	Applications of Wave Mechanics: Particle in a one-dimensional infinite potential	
	well (derivation for energy Eigen value and Eigen function), degeneracy in three-	
	dimensional case, particle in a finite potential well (qualitative), Transmission	
	across a potential barrier: discussion with mention of expression for Transmission	
	& Reflection coefficients, the tunnel effect (qualitative). One-dimensional simple	
	harmonic oscillator (qualitative) - concept of zero - point energy.	

Pedagogy: Lecture/ PPT/ Videos/ Animations/Predict-Observe-Explain/ Demonstration/ Activity/Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Problem Based Learning/ Group Discussion/ Experiential Learning / Self Directed Learning etc.

References:

- 1. Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education.
- 2. Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer Physics Vol. No.I (V Edition)
- 3. Classical Mechanics, G. Aruldhas, 2008, Prentice-Hall of India Private limited, New Delhi.
- 4. Classical Mechanics, Takwale and Puranik-1989, Tata McGraw Hill, New Delhi.
- 5. Resnick, Halliday & Krane John Wiley & Son's Inc., New-York, Singapore, 2005.
- 6. Berkely Physics, Vol. No. I ABC Publications, Bangalore & New-Delhi.
- 7. University Physics (XI-Edition)- Young & Freedman Pearson Education, 2004.
- 8. Classical Mechanics (XVII ed)- Goldstein-Narosa Publishing New Dhli,1998.
- 9. Quantum Mechanics vol 1 and vol 2(I ed)- Shrivatsav-Pragati Prakashan, Meerat, 1977
- 10. Quantum Mechanics- Gupta, Kumar & Sharma- Jayprakashnath & Co, Meerat, 2004
- 11. Quantum Mechanics (I ed)- Powell-Oxford& IBH Publishing, New Dehli, Bombay, Kolkata, 1961
- 12. Quantum Mechanics Pauling & Wilson.
- 13. Modern physics- R. Murugeshan-- S. Chand Publication, New Dehli.
- 14. Introduction to modern physics- Ritchmeyer, Kennerd & Lauritser-TMH Publishing New Dehli
- 15. Perspective of modern physics (VI ed)- A.Baiser- Tata McGraw Hill, New Dehli.2002

Note:

- 1. Total teaching hours are inclusive of solving numerical problems on all the topics.
- 2. Preference may be given to solve maximum number of numerical problems and thought-provoking problems are to be solved wherever necessary.
- 3. Questions should not be framed on review of basic aspects in the semester end examination as it is revision of topics in the lower class.
- 4. Guide/Students are permitted to do any relevant and thought provoking activity, which gives in depth understanding of physics concepts and their application in a specific chapter.
- 5. Guide/students are also permitted to take up any innovative project work/field work/ problem solving activity, so that students get clear understanding of underlying principles of physics/concepts of physics in a particular topic/area of physics.
- 6. Teacher should encourage students to think out of the box and take up activity beyond the syllabus.

Formative Assessment for Theory				
Assessment Occasion/ type	Marks			
Internal Assessment Test 1	10			
Internal Assessment Test 2	10			
Assignment/Small Project/Activities	10			
Seminar	10			
Total	40 Marks			
Formative Assessment as per guidelines.				

B.Sc. Semester – V Discipline Specific Course (DSC)-10 Course Title: Classical Mechanics and Quantum Mechanics Course Code: 035PHY012

Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
DSCC-10	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course students will be able to:

- CO 1: To determine 'g', the acceleration due to gravity, at a given place, from the L T 2 graph, for a simple pendulum.
- CO 2: Study the effect of amplitude oscillation on time period of simple pendulum.
- CO 3: Determine energy Eigen value of particle electron/proton in a finite potential well.
- CO 4: Determine Lagrangian for RL/RC/LC/RLC circuit using analogy with the classical mechanics concept.

Expt. No.	Title: Course Title: Classical Mechanics and QuantumMechanics	56 hrs/ sem
1	To determine 'g', the acceleration due to gravity, at a given place, from the $L - T 2$	
	graph, for a simple pendulum.	
2	Studying the effect of mass of the bob on the time period of the simple pendulum.	
	[Hint: With the same experimental set-up, take a few bobs of different materials	
	(different masses) but of same size. Keep the length of the pendulum same for	
	each case. Starting from a small angular displacement of about 10° find out, in	
	each case, the time period of the pendulum, using bobs of different masses. Does the	
	time period depend on the mass of the pendulum bob? If yes, then see theorder	
	in which the change occurs. If not, then do you see an additional reason to use the	
	pendulum as a time measuring device.	
3	Studying the effect of amplitude of oscillation on the time period of the simple	
	pendulum.	
	[Hint: With the same experimental set-up, keep the mass of the bob and length of the	
	pendulum fixed. For measuring the angular amplitude, make a large protractor on the	
	cardboard and have a scale marked on an arc from 0° to 90° in units of 5° . Fix it on	
	the edge of a table by two drawing pins such that its 0°- line coincides with the	
	suspension thread of the pendulum at rest. Start the pendulum oscillating with a very	
	large angular amplitude (say 70°) and find the time period T of the pendulum. Change	
	the amplitude of oscillation of the bob in small steps of 5° or 10° and determine the	
	time period in each case till the amplitude becomes small (say 5°). Draw a graph	
	between angular amplitude and T. How does the time	
	period of the pendulum change with the amplitude of oscillation? How much does	

	the value of T for A $=10^{\circ}$ differ from that for A= 50° from the graph you have drawn? Find at what amplitude of oscillation, the time period begins to vary?	
	Determine the limit for the pendulum when it ceases to be a simple Pendulum.]	
4	Determine the acceleration of gravity is using Atwood's machine.	
5	Study the conservation of energy and momentum using projectile motion.	
6	To study the spectral characteristics of a photo-voltaic cell (Solar cell) using different filters.	
7	To study I- V characteristics of solar cell and determine its fill factor.	
8	To study the tunneling in Tunnel Diode using I-V characteristics.	
9	Determination of quantum efficiency of Photodiode.	
10	Determine energy Eigen value of particle electron/proton in a finite potential well	
11	Study Tunnel diode as an oscillator.	
12	Determine Lagrangian for RL/RC/LC/RLC circuit using analogy with the Classical mechanics concept.	
13	Study of op amp as an Integrator.	
14	Study of op amp as an Differentiator	
15	FET as common source amplifier.	
16	FET as a DC voltmeter.	

Most of the activities and lessons below *focus* on one or two of the laws of motion. The <u>Build a</u> <u>Balloon Car</u> activity specifically **talks about all three of Newton's laws of motion** students can observe when building and experimenting with a simple balloon-powered car. This is an accessible hands-on activity that uses recycled materials and balloons for a fun combined engineering design project and physics experiment. The activity can be used with a widerange of grade levels to introduce and demonstrate the laws of motion. See the "Digging Deeper" section for a straightforward discussion of how each law of motion can be identified in the balloon car activity. (For a related lesson plan, see <u>Balloon Car Lesson Plan</u>, which is NGSS-aligned for middle school and focuses on the third law of motion.)

In the <u>Push Harder — Newton's Second Law</u>, students build their own cars using craftmaterials and get hands-on exploring Newton's second law of motion and the equation "force equals mass times acceleration" (F=ma). Options for gathering real-time data include using a mobile phone and a sensor app or using a meter stick and a stopwatch. *Questions*: What is the relationship between force, mass, and acceleration? As force increases, what happens to acceleration?

In the <u>Skydive Into Forces</u>, students make parachutes and then investigate how they work to slow down a falling object. As students investigate the forces that are involved, educators can introduce Newton's second law of motion and how different forces change the resulting speed of a falling object. *Questions*: What forces help slow down the speed of a falling object? How does a parachute help slow the fall?

2	Both standard cameras (DSLRs, phone cameras) and our scientific cameras work on the principle of photoelectric effect to produce an image from light, involving the use of photodetectors and sensor pixels. Prepare a report on the working of digital camera .
3	Demonstration of Heisenberg uncertainty principle in the context of diffraction at a single slit:
	The uncertainty in the momentum Δp_{χ} correspond to the angular spread of principal maxima $ heta.$
	Then, $\Delta p_{\chi}={ m sin} heta$. p where p is the momentum of the incident photon.
	Conduct the diffraction at a slit experiment virtually using the following link <u>https://www.walter-fendt.de/html5/phen/singleslit_en.htm</u>
	1. Measure the angular spread (Θ) for different slit widths (Δx) for given wavelength of the incident photon.
	2. Determine the momentum of the incident photon using
	$p = \frac{n}{\lambda}$
	3. Create a line of best fit through the points in the plot $\frac{1}{\Delta p_x}$ against Δx and find its
	slope. How this exercise is related to Heisenberg Uncertainty principle. Make a report of the observations.
4	Virtual lab to demonstrate Photoelectric effect using Value@Amritha:Conduct the virtual experiment using the following link
	https://vlab.amrita.edu/?sub=1&brch=195∼=840&cnt=1
	1. Determine the minimum frequency required to have Photoelectric effectfor an EM
	 Determine the target material if the threshold frequency of EM radiation is5.5x10¹⁵ Hz in a
	particular photoelectric experimental set up.
	surface, if the incident frequency is 3x10 ¹⁵ Hz.
	4. What should be the stopping potential for photoelectrons if the target Material used is Platinum and incident frequency is $2x10^{15}$ Hz? Make a report of the calculations.

5	Visualization of wave packets using Physlet@Quantum Physics:
	The concept of group velocity and phase velocity of a wave packet can be studied using
	thislink https://www.compadre.org/PQP/quantum-need/section5_9.cfm
	Students can take up the exercises using the link which is as
	followshttps://www.compadre.org/PQP/quantum-need/prob5_11.cfm
	Six different classical wave packets are shown in the animations. Which of the wave
	packets have a phase velocity that is: greater than / less than / equal to the group
	velocity? Make a report of the observations.
	Superposition of eigen states in an infinite one dimensional notantial well using OuVie
6	Superposition of eigen states in an infinite one - untensional potential well using Quvis
	(Quantum Mechanics Visualization Project):
	Construct different possible states by considering the first three eigen states and study
	the variation of probability density with position. Take the challenges after understanding
	the simulation and submit the report. The link is as follows
	https://www.standrews.ac.uk/physics/quvis/simulations_html5/sims/SuperpositionState
	s/SuperpositionStates.html
7	Determination of expectation values of position, momentum for a particle in a an infinite
	one - dimensional potential well using Physlet@Quantum Physics:
	The link to the visualization tool for the calculation is as follows
	https://www.compadre.org/POP/guantum-theory/prob10_3.cfm
	A particle is in a one-dimensional box of length $l = 1$. The states shown are normalized.
	The results of the integrals that give $\langle x \rangle$ and $\langle x^2 \rangle$ and $\langle p \rangle$ and $\langle p^2 \rangle$. You may vary n
	from 1 to 10.
	a) What do you notice about the values of $\langle x \rangle$ and $\langle x^2 \rangle$ as you vary <i>n</i> ?
	b) What do you think $\langle x^2 \rangle$ should become in the limit of $n \rightarrow \infty$? Why?
	c) What do you notice about the values of $\langle p \rangle$ and $\langle p^2 \rangle$ as you vary n^2 ?
	Make a report of the calculations.
8	Determination of expectation values for a particle in a one-dimensional harmonic
	oscillator using Physlet@Quantum Physics:
	The link to the visualization tool for the calculation is as follows
	https://www.compadre.org/PQP/quantum-theory/prob12_2.cfm
	A particle is in a one-dimensional harmonic oscillator potential ($\hbar = 2m = 1$; $\omega = k = 2$).
	The states shown are normalized. Shown are ψ and the results of the integrals that give
	$\langle x \rangle$ and $\langle x^2 \rangle$ and $\langle p \rangle$ and $\langle p^2 \rangle$. Vary <i>n</i> from 1 to 10.
	a) What do you notice about how $\langle x \rangle$ and $\langle x^2 \rangle$ and $\langle p \rangle$ and $\langle p^2 \rangle$ change?
	b) Calculate $\Delta x \cdot \Delta p$ for $n = 0$. What do you notice considering $\hbar = 1$?
	c) What is E_n ? How does this agree with or disagree with the standard case
	for the harmonic oscillator?
	d) How much average kinetic and potential energies are in an arbitrary
	energy state?
	Make a report of the calculations.

9	Calculate uncertainties of position and momentum for a particle in a boxusing									
	Physlet@Quantum Physics:									
	The link to the visualization tool for the calculation is as follows									
	https://www.compadre.org/PQP/quantum-theory/prob6_3.cfm									
	A particle is in a one-dimensional box of length $L = 1$. The states shown are normalized. The									
	results of the integrals that give $\langle x \rangle$ and $\langle x^2 \rangle$, and $\langle p \rangle$ and $\langle p^2 \rangle$. You may vary <i>n</i> from 1 to 10.									
	a. For $n = 1$, what are Δx and Δp ?									
	b. For $n = 10$, what are Δx and Δp ?									
10	Write expressions for the three wave functions using Physlet@Quantum Physics:The link to the									
	visualization tool for the calculation is as follows									
	https://www.compadre.org/PQP/quantum-theory/prob8_1.cfm									
	These animations show the real (blue) and imaginary (pink) parts of three time-dependent energy									
	eigenfunctions. Assume x is measured in cm and time is measured in seconds.									
	a. Write an expression for each of the three time-dependent energy									
	eigenfunctions in the form: e ^{i(kx-wt)} .									
	b. What is the mass of the particle?									
	c. What would the mass of the particle be if time was being shown in ms?									
	Make a report of the calculations.									
11	If you store a file on your computer today, you probably store it on a solid-state drive									
	(SSD), Make a detailed report on the role of quantum tunnelling in these devices.									

General instructions:

- 1. Minimum of eight experiments to be performed.
- 2. Practical Records/Journal of the candidate should be certified by the concerned teacher/HOD only after ascertaining successful completion of practical course/experiments by the candidate
- 3. Any new experiment may be added to the list with the prior approval from the BOS.

Scheme of Practical Examination (distribution of marks): 25 marks for Semester end examination

1.	Basic formula, Units & Nature of graph, Circuit Diagram/Ray Diagram/Schematic diagram.	05 Marks
2.	Tabular column with quantities and unit mentioned experimental skills.	05 Marks
3.	Recording of observations, calculations and drawing graph, and accuracy of the result.	10 Marks
4.	Viva-Voce.	2 Marks
5.	Completed & Certified Journal.	3 Marks
	Total	25 Marks

Note: The same shall be used for internal examination as well as for semester end examination from I Sem to VI Sem from the academic year 2023-24.

B.Sc. Semester – V

Discipline Specific Course (DSC)-11

Course Title: Elements of Atomic, Molecular & Laser Physics)

Course Code: 035 PHY 013

Type of	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour per week	Lectures/Hours	of	Assessment	assessment	Marks
				/ Semester	Exam	Marks	Marks	
DSCC-11	Theory	04	04	56 hrs.	2hrs.	40	60	100

Course Outcomes (Cos): At the end of the course, students will be able to:

CO1: Learn origin of spectral lines and spectral series of hydrogen like atom.

CO2: Interpret vector atomic model optical spectra.

CO3: Interpretation of molecular Spectra of compounds using basics of molecular physics.

CO4: Explain laser systems and their applications in various fields.

Unit	Title: Elements of Atomic, Molecular & Laser Physics	56hrs/
Omt	The Dements of Reality Worceand & Daser Thysics	sem
Unit I	Basic Atomic models: Review of Thomson's and Rutherford atomic models and their failure. Theory of e/m of electron by J. J. Thomson method (with derivation). Determination of Charge of an electron by Millikan's oil drop experiment. Bohr atomic model–postulates, energy of electron in nth orbit of Hydrogen like atom (derivation). Origin of the spectral lines, spectral series of hydrogen atom. Effect of finite mass of nucleus on atomic spectra (with derivation). Ritz combination principle: explanation with verification using Paschen and Balmer lines. Bohr's correspondence principle. Explanation of potentials: critical potential, excitation potential, ionization potential , atomic excitation and its types. Franck-Hertz experiment to determine critical potentials. Sommerfeld's atomic model: Derivation of condition for allowed elliptical orbits.	14Hrs
	of condition for anowed emptical orbits.	
Unit II	Vector Atomic Model and Optical Spectra: Vector atom model – model fundamentals, space quantisation of angular momentum, spinning electron; quantum numbers associated with vector atomic model. Coupling schemes – L-S and j-j schemes, Pauli's exclusion principle, Magnetic dipole moment due to orbital motion of electron – derivation, Bohr magneton, Larmor precession. Magnetic dipole moment due to spin motion of electron, moment, total magnetic dipole moment. Lande g-factor and its calculation for different states. Stern-Gerlach experiment – experimental arrangement, principle and result. Fine structure of spectral lines with examples, spin-orbit coupling (qualitative). Optical spectra: spectral terms, spectral notations, selection rules, intensity rules. Fine structure of the sodium D-line. Zeeman effect : normal and anomalous Zeeman effect, experimental study and classical theory of normal Zeeman effect and Zeeman shift expression, theory of anomalous Zeeman effect (derivation), examples for	14Hrs
	anomalous Zeeman effect: Magnetic splitting of Sodium D1 and D2 lines.	

	Molecular Physics: Types of molecules based on their moment of inertia; Types of	
Unit III	molecular motions and energies; Born-Oppenheimer approximation; Origin of	
	molecular spectra; Nature of molecular spectra; Theory of rigid rotator - energy	
	levels and spectrum. Qualitative discussion on Non-rigid rotator and centrifugal	14Hrs
	distortion. Theory of vibrating molecule as a simple harmonic oscillator - energy	
	levels and spectrum. Electronic spectra of molecules - fluorescence and	
	phosphorescence. Raman effect - Stoke's and anti-Stoke's lines, characteristics of	
	Raman spectra, classical and quantum theory, Experimental study of Raman effect,	
	applications of Raman effect.	
Unit IV	Laser Physics: Ordinary light versus laser light, characteristics of laser light.	
	Interaction of radiation with matter - induced absorption, spontaneous emission and	
	stimulated emission with mention of rate equations. Einstein's A and B coefficients	
	- Derivation of relation between Einstein's coefficients and radiation energy	1411
	density. Possibility of amplification of light, population inversion, methods of	14Hrs
	pumping, metastable states. Requisites of laser - energy source, active medium and	
	laser cavity. Difference between three level and four level lasers with examples.	
	Types of lasers with examples, construction and working principle of Ruby Laser	
	and He-Ne Laser. Application of lasers (qualitative) in science & research, isotope	
	separation, communication, fusion, medicine, industry, war and space.	

Pedagogy: Lecture/ PPT/ Videos/ Animations/Predict-Observe-Explain/ Demonstration/ Activity/Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Problem Based Learning/ Group Discussion/ Experiential Learning / Self Directed Learning etc.

References:

- Modern Physics, R. Murugeshan, Kiruthiga Sivaprakash, Revised Edition, 2009, S. Chand & Company Ltd.
- 2. Atomic & Molecular spectra: Laser, Raj Kumar, Revised Edition, 2008, Kedar Nath Ram Nath Publishers, Meerut.
- 3. Atomic Physics, S.N. Ghoshal, Revised Edition, 2013, S. Chand & Company Ltd.
- 4. Concepts of Atomic Physics, S.P. Kuila, First Edition, 2018, New Central Book Agency (P) Ltd.
- Concepts of Modern Physics, Arthur Beiser, Seventh Edition, 2015, Shobhit Mahajan, S. Rai Choudhury, 2002, McGraw-Hill.
- **6.** Fundamentals of Molecular Spectroscopy, C.N. Banwell and E.M. McCash, Fourth Edition, 2008, Tata McGraw-Hill Publishers.
- 7. Elements of Spectroscopy Atomic, Molecular and Laser Physics, Gupta, Kumar and Sharma, 2016, Pragati Publications.

Note:

- 1. Total teaching hours are inclusive of solving numerical problems on all the topics.
- 2. Preference may be given to solve maximum number of numerical problems and thoughtprovoking problems are to be solved wherever necessary.
- 3. Questions should not be framed on review of basic aspects in the semester end examination as it is revision of topics in the lower class.
- 4. Guide/Students are permitted to do any relevant and thought provoking activity, which gives in depth understanding of physics concepts and their application in a specific chapter.
- 5. Guide/students are also permitted to take up any innovative project work/field work/ problem solving activity, so that students get clear understanding of underlying principles of physics/concepts of physics in a particular topic/area of physics.
- 6. Teacher should encourage students to think out of the box and take up activity beyond the syllabus.

Formative Assessment for Theory					
Assessment Occasion/ type	Marks				
Internal Assessment Test 1	10				
Internal Assessment Test 2	10				
Assignment/Small Project/Activities	10				
Seminar	10				
Total	40 Marks				
Formative Assessment as per guidelines.					

B.Sc. Semester – V

Discipline Specific Course (DSC)-12

Course Title: Elements of Atomic, Molecular & Laser Physics

Course Code: 035 PHY 014

Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
DSCC-12	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course students will be able to:

- CO1: Determine the value of Rydberg's constant using diffraction grating/prism and hydrogen discharge tube.
- CO2: Determine fine structure constant using fine structure separation of sodium D-lines using a plane Diffraction grating.
- CO3: Verify Bhor's Correspondence Principle when principal quantum number tends to infinity.
- CO4: Analysis of Rotational spectra of diatomic molecule and hence determine rotational constant, bond length and moment of inertia.

Expt. No.	Title: Elements of Atomic, Molecular & Laser Physics	56 hrs/ sem
1	To determine the value of Rydberg's constant using diffraction grating/prism and hydrogen discharge tube.	
2	To determine fine structure constant using fine structure separation of sodium D- lines using a plane diffraction grating.	
3	To find the value of e/m for an electron by Thomson's method using barmagnets.	
4	To determine the ionization potential of mercury/Xenon	
5	To setup the Millikan oil drop apparatus and determine the charge of an electron.	
6	To determine the absorption lines in the rotational spectrum of Iodine vapors/study of Zeeman effect.	
7	To verify Bhor's Correspondence Principle when principal quantum number tends to infinity.	
8	Analysis of Raman spectrum for diatomic molecule O2, HCL, N2 or any other diatomic molecule.	
9	Verification of Ritz combination Principle for all spectral series hydrogen atom/hydrogen like atoms using available data from literature.	
10	Analysis of Rotational spectra of diatomic molecule and hence determine rotational constant, bond length and moment of inertia.	
11	To determine wavelength/angular spread of He-Ne laser using diffraction grating.	
12	Study the frequency response of first order low pass/high pass filter using Op-Amp	
13	Study of Raman scattering by CCl ₄ using laser and spectrometer/CDS.	
14	Design and construct the crystal oscillator and hence determine its frequency	
15	Determination of Plank's constant by Photo Cell/LED.	
16	LDR characteristics.	

Activities:

Activities 1:

- Students to estimate radii of orbits and energies of electron in case of hydrogen atom in different orbits and plot the graph of radii / energy versus principal quantum number 'n'. Analyze the nature of the graph and draw the inferences.
- Students to search critical, excitation and ionization potentials of different elements and plot the graph of critical /excitation / ionization potentials versus atomic number/mass number/neutron number of element. Analyze the nature of the graph and draw the inferences.

Activities: II:

- Students to couple a p-state and s-state electron via L-S and j-j coupling schemes for asystem with two electrons and construct vector diagrams for each resultant. Analyze the coupling results and draw the inferences.
- Students to estimate magnetic dipole moment due to orbital motion of electron for different states ²P1/2, ²P3/2, ²P5/2, ²P7/2, ²P9/2 and ²P11/2 and plot the graph of dipole moment versus total orbital angular momentum "J'. Analyze the nature of the graph and draw the inferences.

Activities: III

- Students to estimate energy of rigid diatomic molecules CO, HCl and plot the graph of rotational energy versus rotational quantum number 'J'. Analyze the nature of the graph and draw the inferences. Also students study the effect of isotopes on rotational energies.
- Students to estimate energy of harmonic vibrating molecules CO, HCl and plot the graph of vibrational energy versus vibrational quantum number 'v'. Analyze the nature of the graph and draw the inferences.

Activities: IV

- Students to search different lasers used in medical field (ex: eye surgery, endoscopy, dentistry etc.), list their parameters and analyze the need of these parameters for specific application, and draw the inferences. Students also make the presentation of the study.
- Students to search different lasers used in defense field (ex: range finding, laser weapon, etc.), list their parameters and analyses the need of these parameters for specific application, and draw the inferences. Students also make the presentation of the study.

General instructions:

- 1. Minimum of eight experiments to be performed.
- 2. Practical Records/Journal of the candidate should be certified by the concerned teacher/HOD only after ascertaining successful completion of practical course/experiments by the candidate
- 3. Any new experiment may be added to the list with the prior approval from the BOS.

Scheme of Practical Examination (distribution of marks):

25 marks for Semester end examination

1.	Basic formula, Units & Nature of graph, Circuit Diagram/Ray Diagram/Schematic diagram.	05 Marks
2.	Tabular column with quantities and unit mentioned experimental skills.	05 Marks
3.	Recording of observations, calculations and drawing graph, and accuracy of the result.	10 Marks
4.	Viva-Voce.	2 Marks
5.	Completed & Certified Journal.	3 Marks
	Total	25 Marks

Note: The same shall be used for internal examination as well as for semester end examination from I Sem to VI Sem from the academic year 2023-24.

B.Sc. Semester – V Skill Enhancement Course: SEC-3 Course Title: Applied Physics Course Code: 035PHY061

Type of Course	Theory / Practical	Credits	Instruction hour/ week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
SEC-3	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course students will be able to:

CO1: Correct of Hypermetropia (long sightedness).

CO2: Study loading effect of voltmeter in case of very high resistive network.

CO3: Construct of constant current source using Op-Amp/power Transistor/ MOSFET.

CO4: Study DC load line analysis for BJT using different biasing techniques.

Expt. No	Title: Applied Physics	56 hrs/ sem
1	Correction of Hypermetropia (long sightedness)/myopia (short sightedness)	
2	Star to delta conversion using resistive and capacitive network	
3	Study of AM detector using PIN diode.	
4	Determine the energy gap of thermistor.	
5	Study UJT as a relaxation oscillator.	
6	Study SCR as power control device.	
7	Emitter follower.	
8	Loading effect of voltmeter in case of very high resistive network.	
9	Application of LDR: Using BJT as switch.	
10	Design and construct multi range capacitance meter using Op-amp and micro ammeter.	
11	Astable Multivibrator using BJT	
12	Clipping/ Clamping circuit	
13	Application of RTD (PT100) sensor using bridge to measure temperature.	
14	Verification of Thevenin's and Norton's theorem for ladder network using multiple sources (minimum one voltage source and one current source must beused)	
15	DC load line analysis for BJT using different biasing techniques.	
16	Voltage multiplier using diodes and capacitors.	

References:

- 1. B.Sc. Practical Physics by C.L Arora.
- 2. B.Sc. Practical Physics by Harnam Singh and P.S Hemne.
- 3. Practical Physics by G.S Squires.
- 4. Scilab Manual for CC-XI: Quantum Mechanics & Applications (32221501) by Dr Neetu Agrawal, Daulat Ram College, of Delhi.
- 5. Scilab Textbook Companion for Quantum Mechanics by M. C. Jain.
- 6. Advanced Practical Physics for Students by Worsnop B L and Flint H T.
- 7. Computational Quantum Mechanics using Scilab, BIT Mesra.

General instructions:

- 1. Minimum of eight experiments to be performed.
- 2. Practical Records/Journal of the candidate should be certified by the concerned teacher/HOD only after ascertaining successful completion of practical course/experiments by the candidate
- 3. Any new experiment may be added to the list with the prior approval from the BOS.

Scheme of Practical Examination (distribution of marks):

25 marks for Semester end examination

1.	Basic formula, Units & Nature of graph, Circuit Diagram/Ray Diagram/Schematic diagram.	05 Marks
2.	Tabular column with quantities and unit mentioned experimental skills.	05 Marks
3.	Recording of observations, calculations and drawing graph, and accuracy of the result.	10 Marks
4.	Viva-Voce.	2 Marks
5.	Completed & Certified Journal.	3 Marks
	Total	25 Marks

Note: The same shall be used for internal examination as well as for semester end examination from I Sem to VI Sem from the academic year 2023-24.

UG Program: 2023-24

GENERAL PATTERN OF THEORY QUESTION COURSE FOR DSCC

(60 marks for Semester end Examination with 2 hrs. duration)

Part-A

1. Question number 01-06 carries 2 Marks each. Answer any 05 questions : 10 marks

Part-B

2. Question number 07- 11 carries 05 Marks each. Answer any 04 questions : 20 marks

Part-C

3. Question number 12-15 carries 10 Marks each. Answer any 03 questions : 30 marks (Minimum 1 question from each unit and 10 marks question may have Sub-questions for 8+2, or 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed

B.Sc. Semester – VI Discipline Specific Course (DSC)-13 Course Title: Elements of Condensed Matter & Nuclear Physics Course Code: 036PHY011

Type of	Theory /		Instruction	Total No. of	Duration	Formative	Summative	Total
Course	Practical	Credits	hour per week	Lectures/Hours	of Exam	Assessment	assessment	Marks
				/ Semester		Marks	Marks	
DSCC-13	Theory	04	04	56 hrs.	2hrs.	40	60	100

Course Outcomes (COs): At the end of the course students will be able to:

- CO 1: Study crystal systems and X-ray spectra and Braggs X-ray spectrometer.
- CO 2: Understand the concepts of free electron theory of metals, specific heat of solids, semiconductors and magnetic properties of matter.
- CO 3: Understand the theory and applications of Hall Effect.
- CO 4: Describe the processes of alpha, beta and gamma decays based on well-established theories.
- CO 5: Explain the basic aspects of interaction of gamma radiation with matter byphotoelectric effect, Compton scattering and pair production.
- CO 6: Explain the different nuclear radiation detectors such as ionization chamber, Geiger-Muellercounter etc.
- CO 7: Explain the basic concept of scintillation detectors, photo-multiplier tube and semiconductor detectors.

Unit	Title: Elements of Condensed Matter & Nuclear Physics	56 hrs/ sem
	Crystal Systems: Crystal structure: Space Lattice, Lattice translational vectors,	
	Basis of crystal structure, Types of unit cells, primitive, non-primitive cells.	14 11
Unit I	Seven crystal systems, Coordination numbers, Miller Indices, Expression for	14 Hrs
	inter planner spacing.	
	X Rays: Production and properties of X rays, Coolidge tube, Continuous and	
	characteristic X-ray spectra; Moseley's law. X-Ray diffraction, Scattering of X-	
	rays, Bragg's law. Crystal diffraction: Bragg's X-ray spectrometer- powder	
	diffraction method, explain intensity variation with respect to 2Θ (qualitative).	
	Free Electron Theory of Metals: Classical free electron model (Drude-Lorentz	
	model), expression for electrical and thermal conductivity, Wiedemann-Franz	
	law, Failure of classical free electron theory; Quantum free electron theory,	
	Fermi level and Fermi energy, Fermi-Dirac distribution function (expression for	
	probability distribution $F(E)$, statement only); Fermi-Dirac distribution at $T=0$	
	and $E < E_F$, at $T \neq 0$ and $E > E_F$, $F(E)$ Vs E plot at $T = 0$ and $T \neq 0$. Density of	
	states for free electrons (statement only, noderivation). Qualitative discussion of	
	lattice vibration and concept of Phonons;	
	Specific heats of solids : Classical theory, Einstein's and Debye's theory of specific heats (with derivation).	

Unit II	Semiconductors: Review of Semiconductors and its types. Expression for	
	electrical conductivity in case of intrinsic and extrinsic semiconductors,	
	mobility, Hall Effect: Statement, expression for Hall coefficient and mobility.	14Hrs
	Applications of Hall effect.	
	Magnetic Properties of Matter: Review of basic formulae: Magnetic intensity,	
	magnetic induction, permeability, magnetic susceptibility, magnetization (M).	
	Classification of Dia, Para, and ferro magnetic materials. Langevin's classical	
	theory of dia and Para magnetism (with derivation). Curie's law,	
	Ferromagnetism and Ferromagnetic Domains (qualitative). Discussion of B-H	
	Curve: hysteresis and energy loss, hard and soft magnetic materials.	
	Superconductivity: Definition, Experimental results - Zero resistivity and	
	Critical temperature- The critical magnetic field - Meissner effect, Isotope	
	effect, BCS theory (qualitative)Type I and type II	
	Superconductors.	
	Nuclear Physics: Review of general properties of nuclei and radioactivity.	
	Nuclear Forces: Properties of nuclear forces, Meson theory of nuclear forces.	
Unit III	Nuclear Models: Liquid-drop model: Semi-empirical mass formula and	
	explanation of the terms, nuclear fission on the basis of liquid-drop model. Shell	
	model (qualitative), Magic numbers.	14Hrs
	Nuclear Reactions: Types of nuclearreactions with examples. Energy balance in	1 1115
	Nuclear reactions and the Q-value.Brief discussions on compound nucleus	
	formation in nuclear reactions.	
	AlphaDecay: Gamow's theory of alpha decay (without derivation). Derivation of	
	expression for alpha disintegration energy. Range of Alpha particles.	
	Experimental determination of range of alpha particles. Geiger-Nuttal relationand	
	its significance (qualitative). Alpha particle spectra with examples.	
	BetaDecay: Types of beta decay with examples. The neutrino theory of beta	
	decay(qualitative). Decay scheme of TI-204.	
	Interaction of Nuclear Radiation with Matter: Gamma ray interaction through	
Unit IV	matter, photoelectric effect, Compton scattering, pair production (qualitative	
	with mention of cross section and z dependence) Energy loss due to ionization	
	(quantitative description of Bethe block formula), energy loss of electrons,	1 / I Inc
	introduction of Cerenkov radiation. Decay schemes of Cs-137, Na-22, Mn-54	14ΠΙS
	and CO-57.	
	Detector for Nuclear Radiations: Gas detectors: estimation of electric field.	
	mobility of particle, for ionization chamber (construction & working) and GM	
	counter (construction, working and characteristics). Basic principle of Scintillation	
	detectors (with NaI(Tl) as example) and construction of photo- multiplier tube	
	(PMT). Semiconductor Detectors (Si (Li) and Ge(Li)) for charged particle and	
	photon detection (qualitative). Accelerators: Cyclotrons (construction working	
	and derivation of expression for final energy), synchrotron construction and	
	working. Applications of Accelerators.	
	counter (construction, working and characteristics). Basic principle of Scintillation detectors (with NaI(Tl) as example) and construction of photo- multiplier tube (PMT). Semiconductor Detectors (Si (Li) and Ge(Li)) for charged particle and photon detection (qualitative). Accelerators : Cyclotrons (construction, working and derivation of expression for final energy), synchrotron construction and working Applications of Accelerators	

Pedagogy: Lecture/ PPT/ Videos/ Animations/Predict-Observe-Explain/ Demonstration/ Activity/Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Problem Based Learning/ Group Discussion/ Experiential Learning / Self Directed Learning etc.

References:

- 1. Solid State Physics-R. K. Puri and V.K. Babber., S.Chand publications,1st Edition(2004).
- 2. Fundamentals of Solid State Physics-B.S.Saxena, P.N. Saxena, Pragati prakashan Meerut (2017).
- 3. Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- 4. Nuclear Physics, Irving Kaplan, Narosa Publishing House.
- 5. Introduction to solid State Physics, *Charles Kittel*, VII edition, (1996)
- 6. Solid State Physics- A J Dekker, MacMillan India Ltd, (2000)
- 7. Essential of crystallography, M A Wahab, Narosa Publications (2009)
- 8. Solid State Physics-S O Pillai-New Age Int. Publishers (2001).
- 9. Concepts of nuclear physics by Bernard L. Cohen. (Tata McGraw Hill, 1998).
- 10. Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia, 2004).
- 11. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- 12. Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (Institute of Physics (IOP) Publishing, 2004).
- 13. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- 14. Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).

Note:

- 1. Total teaching hours are inclusive of solving numerical problems on all the topics.
- 2. Preference may be given to solve maximum number of numerical problems and thought-provoking problems are to be solved wherever necessary.
- 3. Questions should not be framed on review of basic aspects in the semester end examination as it is revision of topics in the lower class.
- 4. Guide/Students are permitted to do any relevant and thought provoking activity, which gives in depth understanding of physics concepts and their application in a specific chapter.
- 5. Guide/students are also permitted to take up any innovative project work/field work/ problem solving activity, so that students get clear understanding of underlying principles of physics/concepts of physics in a particular topic/area of physics.
- 6. Teacher should encourage students to think out of the box and take up activity beyond syllabus.

Formative Assessment for Theory					
Assessment Occasion/type	Marks				
Internal Assessment Test 1	10				
Internal Assessment Test 2	10				
Assignment/Small Project/Activities	10				
Seminar	10				
Total	40 Marks				
Formative Assessment as per guidelines.					

B.Sc. Semester – VI Discipline Specific Course (DSC)-14

Course Title: Elements of Condensed Matter & Nuclear Physics

Course Code: 036PHY012

Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
DSCC-14	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs):At the end of the course, students will be able to:

- CO1: Study the Hall Effect in semiconductor: determination of types of charge carrier, Hall coefficient, Mobility.
- CO2: Analysis of X-ray diffraction spectra and calculation of lattice parameter.
- CO3: Determine of particle size from XRD pattern using Debye-Scherrer formula.
- CO4: Study the characteristics of Geiger-Muller Tube and determine the threshold voltage, plateau region and operating voltage.

Expt.	Title: Flements of Condensed Matter & Nuclear Physics	56 hrs/
No.	The Elements of Contensed Matter & Nuclear Thysics	sem
1	Hall Effect in semiconductor: determination of types of charge carrier, Hall	
1	coefficient, Mobility.	
2	Energy gap of semiconductor by Four Probe Method.	
3	Analysis of X-ray diffraction spectra and calculation of lattice parameter.	
4	Energy gap of semiconductor (diode/transistor) by reverse saturation method	
5	B-H Curve.	
6	Determination of particle size from XRD pattern using Debye-Scherrer formula.	
7	Measurement of susceptibility of paramagnetic solution (Quinck's Tube	
/	Method).	
8	Measurement of susceptibility of paramagnetic solid (Gouy's Method)	
0	Verification of Geiger- Nuttal Law using data available in the literature for	
9	natural Radioactive series.	
10	Study the characteristics of Geiger-Muller Tube and determine the threshold	
10	voltage, plateau region and operating voltage.	
11	Study the absorption of beta particles in aluminum foils using GM counter and	
11	hence determine mass attenuation coefficient of Aluminum.	
12	Study the absorption of beta particles in thin copper foils using G M counter	
12	and determine mass attenuation coefficient.	
13	Study the attenuation of gamma rays in lead foils using Cs-137 source and G	
15	M counter. Calculate mass attenuation coefficient of Lead for Gamma.	
14	Determine the end point energy of TI-204 source by studying the absorption	
	of beta particles in Aluminum foils.	
15	To measure e/K using BJT.	
16	Determine the Fermi energy of Copper.	

Activities:

- Students to construct seven crystal systems with bamboo sticks and rubber bands. Use foam ball as atoms and study the BCC and FCC systems.
- Students to search the characteristic X- ray wavelength of different atoms/elements and plot characteristic wavelength vs atomic number and analyze the result and draw the inference.
- Magnetic field lines are invisible. Students to trace the magnetic field lines using bar magnet and needle compass. https://nationalmaglab.org/magnet-academy/try-this-at-home/drawing- magnetic-field-lines.
- Study the decay scheme of selected alpha, beta & gamma radioactive sources with the helpof standard nuclear data book.
- Calculate binding energy of some selected light, medium and heavy nuclei. Plot the graphof binding energy versus mass number A.
- Study the decay scheme of standard alpha, beta and gamma sources using nuclear databook.
- Make the list of alpha emitters from Uranium series and Thorium series. Search the kinetic energy of alpha particle emitted by these alpha emitters. Collect the required data such as half life or decay constant. Verify Geiger-Nuttal in each series.
- Study the Z dependence of photoelectric effect cross section. Study the Z dependence of common cross section for selected gamma energies and selected elements through theoretical calculation.
- List the materials and their properties which are used for photocathode of PMT.
- Study any two types of PMT and their advantages and disadvantages.

General instructions:

- 1. Minimum of eight experiments to be performed.
- 2. Practical Records/Journal of the candidate should be certified by the concerned teacher/HOD only after ascertaining successful completion of practical course/experiments by the candidate
- 3. Any new experiment may be added to the list with the prior approval from the BOS.

Scheme of Practical Examination (distribution of marks):

25 marks for Semester end examination

1.	Basic formula, Units & Nature of graph, Circuit Diagram/Ray Diagram/Schematic diagram.	05 Marks
2.	Tabular column with quantities and unit mentioned experimental skills.	05 Marks
3.	Recording of observations, calculations and drawing graph, and accuracy of the result.	10 Marks
4.	Viva-Voce.	2 Marks
5.	Completed & Certified Journal.	3 Marks
	Total	25 Marks

Note: The same shall be used for internal examination as well as for semester end examination from I Sem to VI Sem from the academic year 2023-24.

B.Sc. Semester – VI Discipline Specific Course (DSC)-15 Course Title: Electronic Instrumentation & Sensors Course Code: 036PHY013

Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
DSCC-15	Theory	04	04	56 hrs.	2hrs.	40	60	100

Course Outcomes (COs): At the end of the course, students will be able to:

- CO1: Identify different types of tests and measuring instruments used in practice and understand their basic working principles.
- CO2: Get hands on training in wiring a circuit, soldering, making a measurement using an electronic circuit used in instrumentation.
- CO3: Have an understanding of the basic electronic components viz., resistors, capacitors, inductors, discrete and integrated circuits, colour codes, values and pin diagram, their practical use.
- CO4: Understanding of the measurement of voltage, current, resistance value, identification of the terminals of a transistor and ICs.
- CO5: Identify and understand the different types of transducers and sensors used in robust and handheld instruments.
- CO6: Understand and give a mathematical treatment of the working of rectifiers, filter, data converters and different types of transducers.
- CO7: Connect the concepts learnt in the course to their practical use in daily life.
- CO8: Develop basic hands-on skills in the usage of oscilloscopes, multi meters, rectifiers, amplifiers, oscillators and high voltage probes, generators and digital meters.
- CO9: Servicing of simple faults of domestic appliances: Iron box, immersion heater, fan, hot plate, battery charger, emergency lamp and the like.

Unit	Title: Electronic Instrumentation & Sensors	56 hrs/
		sem
	DC Power Supply: Block diagram of regulated power supply, Zener diode	
	characteristics and Zener diode as voltage regulator, Dual power Supply using	
Unit I	78xx and 79xx ICs.	
	Constant Current Source: Construction using BJT and IC 741 and its	
	characteristics.	14Hrs
	Basic electrical measuring Instruments: Cathode ray oscilloscope- block diagram,	1
	basic principle, electron beam, CRT features, signal display. Basic elements of digital	
	storage oscilloscopes. Basic DC voltmeter for measuring potential difference,	
	extending voltmeter range. AC voltmeter using rectifiers. Basic DC ammeter,	
	requirement of a shunt, extending of ammeter	
	ranges.	

	Wave form Generators and Filters: Basic principle of standard AF signal	
Unit II	generator: Fixed frequency and variable frequency, AF sine and square wave	
	generator, basic Wein -bridge network and oscillator configuration, triangular	1 411
	and saw tooth wave generators, circuitry and waveforms.	14Hrs
	Passive and active filters: Fundamental theorem of filters, proof of the	
	theorem by considering a symmetrical T-network. Types of filters, circuitry	
	and cut-off frequency and frequency response of passive (RC) and active (op-	
	amp based) filters: Low pass, high pass and band pass.	
	Data Conversion and Display: Digital to Analog (D/A) and Analog to	
	Digital (A/D) converters – A/D converter with pre- amplification and	
Unit III	filtering. D/A converter - variable resistor network, ladder type (R-2R) D/A	
	converter, Op-amp based D/A converter.	14hrs
	Digital Display Systems and Indicators: Classification of displays, Light	1-1115
	Emitting Diodes (LED) and Liquid Crystal Display (LCD) - structure and	
	working.	
	Data Transmission Systems: Advantages and disadvantages of digital	
	transmission over analog transmission, Need of Modulation, Types of	
	Modulation: Analog and digital, Analog Amplitude Modulation (AM)	
	expression, modulation index and its importance, frequency spectrum,	
	Amplitude modulator using BJT, Digital Pulse amplitude modulation (PAM),	
	Pulse Position Modulation (PPM) and Pulse Width Modulation (PWM) -	
	General principles. Principle of Phase Sensitive Detection (PSD).	
	Sensors: Basics of Energy Transformation: transducers, sensors and actuators	
Unit IV	(definitions). Difference between sensor and actuators, detectable	
	phenomenon. Need for Sensors. Classification of sensors into different types.	1/Ura
	Selection criteria and characteristics: Range; resolution, Sensitivity, error,	141115
	repeatability, linearity and accuracy, impedance, backlash, Response time,	
	Dead band (definition).	
	Signal Transmission: Types of signal: Electronic Signal.	
	Resistive Sensors: Working Principle and applications of potentiometer,	
	Strain Gauges, Thermistors and Photo-resistive sensor.	
	Inductive Sensors: Principle of operation, construction details,	
	characteristics and applications of LVDT, Design of Displacement	
	measurement system using LVDT.	
	Capacitive transducers: Principle of operation, construction details,	
	characteristics of Capacitive transducers and Applications of capacitor	
	microphone, capacitive pressure sensor. Working Principles and applications	
	of piezoelectric sensors.	
	Light Sensors: Photoelectric transducer: construction, working, application,	
	photo-voltaic transducer-construction, working, application.	

Pedagogy: Lecture/ PPT/ Videos/ Animations/Predict-Observe-Explain/ Demonstration/ Activity/Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Problem Based Learning/ Group Discussion/ Experiential Learning / Self Directed Learning etc.

References:

- 1. Physics for Degree students (Third Year) C.L. Arora and P.S. Hemne, S, Chand and Co. Pvt. Ltd. 2014(For Unit-1, Power supplies)
- Electronic Instrumentation, 3rd Edition, H.S. Kalsi, McGraw Hill Education India Pvt. Ltd. 2011 (For restof the syllabus)
- Instrumentation Devices and Systems (2nd Edition)– C.S. Rangan, G.R. Sarma, V.S.V. Mani, Tata McGraw Hill Education Pvt. Ltd. (Especially for circuitry and analysis of signal generators and filters

Note:

- 1. Total teaching hours are inclusive of solving numerical problems on all the topics.
- 2. Preference may be given to solve maximum number of numerical problems and thought-provoking problems are to be solved wherever necessary.
- 3. Questions should not be framed on review of basic aspects in the semester end examination as it is revision of topics in the lower class.
- 4. Guide/Students are permitted to do any relevant and thought provoking activity, which gives in depth understanding of physics concepts and their application in a specific chapter.
- 5. Guide/students are also permitted to take up any innovative project work/field work/ problem solving activity, so that students get clear understanding of underlying principles of physics/concepts of physics in a particular topic/area of physics.
- 6. Teacher should encourage students to think out of the box and take up activity beyond the syllabus.

Formative Assessment for Theory					
Assessment Occasion/type		Marks			
Internal Assessment Test 1		10			
Internal Assessment Test 2		10			
Assignment/Small Project/Activities		10			
Seminar		10			
	Total	40 Marks			
Formative Assessment as per guidelines.					

B.Sc. Semester – VI

Discipline Specific Course (DSC)-16 Course Title: Course Title: Electronic Instrumentation & Sensors Course Code: 036PHY014

Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
DSCC-16	Practical	02	04	56 hrs.	3hrs.	25	25	50

Course Outcomes (COs): At the end of the course students will be able to:

- CO1: Design and construct a Wien bridge oscillator (sine wave oscillator) using O-Amp IC 741.Choose the values of R and C for a sine wave frequency of 1 KHz. Vary the value of R and C to change the oscillation frequency.
- CO2: Study of generation of voltage using piezo- electric sensor/ vibration sensor.
- CO3: Design and construct D/A converter using resistor ladder network.
- CO4: Study the frequency response of a RC low pass filter

Expt.	Title: Course Title: Electronic Instrumentation & Sensors	56.hrs/
No,		sem
1	Design Zener diode as a voltage regulator and study the load and line regulation.	
2	Construction of dual power supply using IC 78xx and 79xx	
3	Calibration of a low range voltmeter using a potentiometer	
4	Calibration of an ammeter using a potentiometer	
5	Design and construct a Wien bridge oscillator (sine wave oscillator) using Op-Amp	
	IC741. Choose the values of R and C for a sine wave frequency of 1 KHz. Vary	
	the value of R and C to change the oscillation frequency	
6	Generation of PAM/PPM with two different amplitudes.	
7	Construction of constant current source using Op-Amp/power Transistor/ MOSFET	
8	Generation of PWM with two different amplitudes.	
9	Study of micro phone as capacitive transducer.	
10	Study of LVDT.	
11	Study of generation of voltage using piezo- electric sensor/ vibration sensor.	
12	Generate amplitude modulated wave using BJT.	
13	Design and construct D/A converter using resistor ladder network.	
14	Design and construct two bit A/D converter using OP- Amp	
15	Study the frequency response of a RC low pass filter and CR high filter	
16	Determine Time Delay between two pulses/signals using C. R. O.	

Activities: I

- Design and wire your own DC regulated power supply. Power output: 5 V, 10 V, ± 5 V. Components required: A step down transformer, semiconductor diodes (BY126/127), Inductor, Capacitor, Zener diode or 3-pin voltage regulator or IC. Measure the ripple factor and efficiency at each stage. Tabulate the result.
- Extend the range of measurement of voltage of a voltmeter (analog or digital) using external component and circuitry. Design your own circuit and report.
- Measure the characteristics of the signal waveform using a CRO and function generator. Tabulate the frequency and time period. Learn the function of Trigger input in CRO.
- Learn to use a Storage Oscilloscope for measuring the characteristics of a repetitive input signal. Convince yourself how signal averaging using Storage CRO improves S/N ratio.

Activities: II

- Measure the amplitude and frequency of the different waveforms and tabulate the results. Required instruments: A 10 MHz oscilloscope, Function generators (sine wave and square wave).
- Explore where signal filtering network is used in real life. Visit a nearby telephone exchange and discuss with the Engineers and technicians. Prepare a report.
- Explore op-amp which works from a single supply biasing voltage (+15V). Construct an inverting/non-inverting amplifier powered by a single supply voltage instead of dual or bipolar supply voltage.
- Op-amp is a linear (analog) IC. Can it be used to function as logic gates? Explore, construct and implement AND, OR NAND and NOR gate functions using op-amps. Verify the truth table. Hint: LM3900 op-amp may be used. The status of the output may be checked by LED.

Activities: III

- Explore where modulation and demodulation technique is employed in real life. Visit a Radio broadcasting station. (Aakashavani or Private). Prepare a report on different AM and FM stations.
- Explore and find out the difference between a standard op-amp and an instrumentation op-amp. Compare the two and prepare a report.

Activities: IV

- Construct your own thermocouple for the measurement of temperature with copper and constantan wires. Use the thermocouple and a Digital multi meter (DMM). Record the emf (voltage induced)by maintaining one of the junctions at a constant temperature (say at 0°C, melting ice) and another junction at variable temperature bath. Tabulate the voltages induced and temperatures read out using standard chart (Chart can be downloaded from the internet).
- Observe a solar water heater. Some solar water heaters are fitted with an anode rod (alloy of aluminum). Study why it is required. Describe the principle behind solar water heater.

General instructions:

- 1. Minimum of eight experiments to be performed.
- 2. Practical Records/Journal of the candidate should be certified by the concerned teacher/HOD only after ascertaining successful completion of practical course/experiments by the candidate
- 3. Any new experiment may be added to the list with the prior approval from the BOS.

Scheme of Practical Examination (distribution of marks):

1.	Basic formula, Units & Nature of graph, Circuit Diagram/Ray Diagram/Schematic diagram.	05 Marks
2.	Tabular column with quantities and unit mentioned experimental skills.	05 Marks
3.	Recording of observations, calculations and drawing graph, and accuracy of the result.	10 Marks
4.	Viva-Voce.	2 Marks
5.	Completed & Certified Journal.	3 Marks
	Total	25 Marks

25 marks for Semester end examination

Note: The same shall be used for internal examination as well as for semester end examination from I Sem to VI Sem from the academic year 2023-24.

B.Sc. Semester – VI Internship/Mini Project

Course Title: Internship/Projects in Physics at UG level

Course Code: 036PHY091

Type of Course	Theory / Practical	Credits	Instruction hour/week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative assessment Marks	Total Marks
Internship/ Project	Practical	02				50	0	50

Course Outcomes (COs): At the end of the course the students will be able to

- CO1: The students learn the scientific methodology in carrying out internship/project work including planning and execution of the experiment.
- CO2: The students acquire experiential learning by handling instruments/devices, etc., while setting up an experiment or by reading in-depth assigned subject for theoretical analysis.
- CO3: The students learn the importance of team work, mutual participation and nurture their motivation either towards theoretical or experimental internship/project work.
- CO4: Internship/project help students to get research and industrial exposure and application of knowledge.

Internship:

A course requiring students to participate in a professional activity or work experience, or cooperative education activity with an entity external to the education institution, normally under the supervision of an expert of the given external entity. A key aspect of the internship is induction into actual work situations for 2 credits. Internships involve working with local industry, local governments (such as panchayats, municipalities) or private organizations, business organizations, artists, crafts persons, and similar entities to provide opportunities for students to actively engage in on-site experiential learning.

Note:

- 1. One credit internship is equal to 30 hrs on field experience.
- 2. Internship shall be Discipline Specific of 45-60 hours (2 credits) with duration 1-2 weeks.
- 3. Internship may be full-time/part-time (full-time during last 1-2 weeks before closure of the semester or weekly 4 hrs. in the academic session for 13-14 weeks).
- 4. College shall decide the suitable method for program wise but not subject wise.
- 5. Internship mentor/supervisor shall avail work allotment during 6^{th} semester for a maximum of 20hrs.
- 6. The student should submit the final internship report (45-60 hours of Internship) to the mentor for completion of the internship.
- 7. Method of Evaluation: Power Point Presentations, Submission of Report and Internship Completion Certificate.

Mini Project:

- The project work may be carried out in the college.
- Project work may include the experimental works such as studying the properties of materials, designing of electronic gadgets, electrical units etc.
- The project report should be submitted by each student at the end of VI semester to become eligible for the examination.
- The evaluation of the project carries a maximum of **50** marks. The experimental work and preparation of the report carries **40 Marks**. The viva-voce examination carries a maximum of **10** marks and will be in the form of presentation by the student.
- During this examination, the project supervisor along with two internal examiners from the panel of BOE will be involved in the evaluation.

References:

- 1. An Introduction to Scientific Research: E. Bright Wilson Jr., McGraw Hill Book Co., New York (1952) (Chapters 3 & 9)
- Research Methodology: a step-by-step guide for beginners (3rd ed.) Ranjit Kumar, SAGE Publication, London (2011)
- 3. Research Methodology: an introduction (2nd ed.) Wayne Goddard, Stuart Melville (2007)
- 4. Principles of Instrumental Analysis, Douglas A. Skoog, F. James Holler & Timothy A. Nieman, Harcourt College Publishers, (2001)
- 5. Experimental measurements: precision, Error and Truth N C Barford- Addison-Wesley Pub (1967)
- Computer oriented numerical methods V. Rajaraman, Prentic Hall of India Pvt. Ltd, New Delhi (2003)
- 7. Computational Physics R.C. Verma, P.K.Ahluwalia & K.C. Sharma. New Age Int.(P) Ltd publishers, New Delhi (1999)

Formative Assessment for Project					
Assessment	Distribution of Marks				
The Experimental Work	20 Marks				
Preparation of the Report	20 Marks				
Power Point Presentation and Viva-Voce	10 Marks				
Total	50 Marks				

UG Program: 2023-24

GENERAL PATTERN OF THEORY QUESTION COURSE FOR DSCC

(60 marks for Semester end Examination with 2 hrs. duration)

Part-A

4. Question number 01-06 carries 2 Marks each. Answer any 05 questions : 10 marks

Part-B

5. Question number 07- 11 carries 05 Marks each. Answer any 04 questions : 20 marks

Part-C

6. Question number 12-15 carries 10 Marks each. Answer any 03 questions : 30 marks (Minimum 1 question from each unit and 10 marks question may have Sub-questions for 8+2, or 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed